Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 469: 133990, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460261

RESUMEN

Heavy metal migration in soil poses a serious threat to the soil and groundwater. Understanding the migration pattern of heavy metals (HMs) under different factors could provide a more reasonable position for pollution evaluation and targetoriented treatment of soil heavy metal. In this study, the migration behavior of Pb and Cd in co-contaminated soil under different pH and ionic strength (NaCl concentration) was simulated using convective dispersion equation (CDE). We predicted the migration trends of Pb and Cd in soils after 5, 10, and 20 years via PHREEQC. The results showed that the migration time of Cd in the soil column experiment was about 60 days faster than that of Pb, and the migration trend was much steeper. The CDE was proved to describe the migration behavior of Pb and Cd (R2 > 0.75) in soil. The predicted results showed that Cd migrated to 15-20 cm of soil within 7 years and Pb stayed mainly in the top 0-6 cm of soil within 5 years as the duration of irrigation increased. Overall, our study is expected to provide new insight into the migration of heavy metal in soil ecosystems and guidance for reducing risk of heavy metal in the environment.

2.
Sci Total Environ ; 882: 163575, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37075998

RESUMEN

Potentially toxic elements (PTEs) in the dustfall-soil-crop system pose a serious threat to the ecological environment and agricultural production. However, there is still a knowledge gap in terms of better understanding the distinctive sources of PTEs by integrating various models and technologies. In this study, we comprehensively investigated the concentrations, distribution, and sources of seven PTEs in a dustfall-soil-crop system (424 samples in total) near a typical non-ferrous mining area, using absolute principal component score/multiple linear regression (APCS/MLR) combined with X-ray diffraction (XRD) and microscopy techniques. Our results showed that the mean values of As, Cd, Cr, Cu, Ni, Pb, and Zn in the soils were 211, 14, 105, 91, 65, 232, and 325 mg/kg, respectively. These values were significantly higher than the background soil values in Yunnan. Except for Ni and Cr, all elements in the soil were significantly higher than the screening values of agricultural lands in China. The spatial distribution of PTE concentrations was similar among the three media. The ACPS/MLR, XRD, and microscopy analyses further indicated that soil PTEs mainly originated from industrial activities (37 %), vehicle emissions and agricultural activities (29 %), respectively. Dustfall PTEs mainly originated from vehicle emissions and industrial activities, accounting for 40 % and 37 %, respectively. Crop PTEs mainly originated from vehicle emissions and soil (57 %), and agricultural activities (11 %), respectively. PTEs seriously threaten the safety of agricultural products and the ecological environment once they settle from the atmosphere to soil and crop leaves, further accumulate in crops, and spread through the food chain. Therefore, our study provides scientific evidence for government regulators to control PTE pollution and reduce their environmental risks in dustfall-soil-crop systems.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo , Metales Pesados/análisis , China , Emisiones de Vehículos/análisis , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...